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The formation of coherent structures in strongly interacting 
q-boson systems 

J A Tuszytiskit and M Kihler 
Institut de  Physique Nuckaire de  Lyon IN2P3-CNRS et Universite Claude Bernard, 
43 Boulevard du 11 Novembre 1918 F-69622 Villeurbanne Ceden. France 

Received 20 September 1991 

Abstract. We combine two recent developments in the areas of mathematical physics and 
many body systems. The first is the introduction of systems of q-bosons in connection with 
the study of  quantum groups. The second is the formulation of nonlinear dynamics for 
interacting manyparticle systems. In this paper, we demonstrate the role of quantum 
groups via the introduction of interacting q-bosons. A number of interesting properties 
emerge which involve dissipative nonlinear dynamics, bifurcation effects and transitions 
between localized and extended states. 

1. Introduction 

In a series of papers (Tuszynski and Dixon 1989a, b, Dixon and Tuszytiski 1989,1990) 
a new method was developed to treat strongly interacting many-body systems of 
particles which can be described using the generic effective Hamiltonian 

Here, the first term describes one-body interactions and the second involves two-body 
exchanges of energy. The operators a: and al are second quantized creators and 
anniiniiaiors, respeciiveiy, and ihey are aiiowed io be both of Eose-Einstein and 
Fermi-Dirac type. The latter eventuality, however, is not of interest in the present 
paper. The labels on the operators k, 1 and m refer to linear momentum but the method 
developed does not necessarily rely on this identification. In the present paper we will, 
instead, identify the operator labels with sites on a real lattice, each site having its 
own energy structure, and a dispersion relation in both the first and the second terms 
in equation (1) will provide a coupling between neighbouring lattice sites. The range 
of applicability of this model is very large and includes (Taylor 1970, Callaway 1976) 
most phenomena in solid state physics (crystal lattice dynamics, magnetism, electrons 
in metals, superconductivity, superfluidity, to name but a few examples). It is also 
quite feasible to extend the range of applications to atomic physics (Judd 1967) as 
well as to field theory and subatomic phenomena (Fetter and Wdlecka 1971). 

It is the aim of the present paper to extend the validity of the method of coherent 
structures to the case of quantum groups, i.e. q-deformed quantum oscillators. The 
approach that will be adopted is to follow the method of coherent structures first, i.e. 
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to calculate the Heisenberg equations of motion for the second quantized operators 
which are now required to obey q-deformed commutation relations. This will be 
followed by a limitation to include only the nearest-neighbour interactions and then 
a classical field operator will be introduced to study the dynamics of the envelope. 
Several important limiting cases will be investigated including the limit q = 1 ,  q close 
to 1 (on both sides of unity) and q very large. The resultant equation of motion for 
the classical field will be derived and solved in a number of important cases. 

I A Tuszyriski and M Kibler 

2. Quantum groups 

A new algebraic structure, the structure of quantum group, has been developed since 
1985 (Drinfel'd 1985, Jimbo 1985) and is still the subject of extensive developments 
both in mathematics and theoretical physics. The formal structure of a quantum group 
is related to the structure of a Hopf bi-algebra and its physical origin is rooted in 
various fields of theoretical physics (i.e. statistical mechanics, integrable systems, 
conformal field theory, etc.). In this introductory section of the paper we briefly describe 
one of the simplest quantum groups, namely the quantum group SUJ2). 

The starting point is to consider the usual Fock space of quantum states 

F = { l n ) :  n E N )  (2) 

which is commonly used in second quantization. Then, linear operators a', a and N 
are defined by the following relations: 

a'ln) = m l n  + 1) (30) 

a l n ) = m l n  - 1) (36) 

N l n ) =  n l n )  (3c) 

where the symbol [. . .] is defined through 

for a given (fixed) complex number q and an arbitrary complex number c. The same 
symbol can be applied to an operator in place of E. Note that in the limiting case q = 1, 
we recover the standard definitions of creation, annihilation and number operators for 
a', a and N, respectively. We refer to a', a and N of equation (3)  as q-deformed 
operators. 

It can be readily demonstrated that the following properties are satisfied by these 
operators: 

(a)'= a' N + = N  ( 5 0 )  

[ ~ , a ' ] = a +  [N, a J = -a (56)  

where [X, Y] = [X, Y]- = XY - YX is the commutator of X and Y. 
It is also easy to show that 

aa' = [N+ 13 (60) 

a'a=[N] (6b) 
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as well as 
a a + - q - ' a ' a = q N  

aa'-qa'a = q-N. 

Any set {a, a'} of operators which satisfy the properties (6) and (7) is referred to as 
q-bosons and was first defined by Macfarlane (1989), Biedenharn (1989) and other 
authors. 

The quantum group SUJ2) can be generated from two commuting sets {a, a'} and 
{b, b'] of q-bosons. Indeed, it is now well-known that the operators J _ =  b'a, .I,= 
(l/2)(N,, - N b )  and J+ = a'b span the quantum algebra su,(2) associated with SU,(2) 
(Jimbo 1985). 

Many other interesting properties can be found for q-bosons which reflect their 
character as natural extensions of ordinary boson ladder operators. In particular, a 
n - A e f n - d  ~ n n r m r t n i n t v  nrinrinle i c  r n n t m l l d  h\r I R m i A m n h n m  lO!?O\ 

~ -"I -....--. I..1" ..-.... ..I.-. Y.- ." -"...I"..--. ", \y"L'- 1.1111.. -,",, 
cosh[ ( n  +:)In( q)] 

cosh[fln(q)] ' 
[x, pJ = ih([N+ I] -[ NI) = ih 

Furthermore, the q-deformed harmonic oscillator Hamiltonian is defined as (Bieden- 
harn 1989, Macfarlane 1989) 

=$!..'+.'.)fi. = ( [ . N +  ]!+[ .N!&. (9) 

Similarly, q-deformed angular momentum operators may be obtained and a q-deforma- 
tion of the Schwinger algebra S 0 ( 3 , 2 )  can also be found (Kibler and Nigadi 1991). 

In this paper we develop another type of extension. We consider an ensemble of 
interacting boson subsystems, labelled by a subscript k, each of which is characterized 
by the set { a k ,  a:}. We assume that for each k separately relations (6)-(7) are satisfied. 
In addition, if k # I the two sets commute, i.e. 

[ a : , a : ] = [ a k , a , ] = [ a : , a 1 ] = o .  (10) 
We then describe the total system by the Hamiltonian (1) composed of q-bosons. 

their q-boson properties. 
In the next section we derive the equations of motion for ladder operators using 

3. Derivation of the equation of motion 

We start with the effective Hamiltonian of equation ( 1 )  adapted to the problem of 
q-bosons placed on a lattice where conservation of linear momentum is not involved, 
i.e. we take 

"t"'" " (!a) U - v  .. "'..I v h "ex- L. Y k l U k U I T  L Y k l . m , p ~ k " l Y m Y p  
k. I k.1.m.p 

and all the subscripts label lattice sites. Of course, an analogous formulation of the 
problem for k-space (reciprocal space) purposes is possible but it is more restrictive 
and hence less general since we then have to impose p = k +  I -  m as a result of 
momentum conservation. This will result in some quantum processes (i.e. super 
exchange) that we discuss later, to be inadmissible. We then calculate the Heisenberg 
equation of motion for an annihilator a, of a quantum of energy for the nth q-boson, 
so that 

ihd. = - [ H e x ,  a,]. (11) 
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Using the property 
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[AB, Cl=[A, C l B + A [ B ,  C] (12) 

and calculating the commutator [a, a ' ]  for a q-boson from equation (7) as 

[a, a ' ]=  q N ( l  + q ) +  q-la'a-qaa' (13) 

yield 

where we have introduced the operator 

(15) 

The above operator contains all the crucial information about the q-boson character 
of the quantum system. I t  is easy to see that in the limit q + I ,  we have A: + 1 and, as 
a result, equation (14) tends to its standard counterpart, i.e. equation (18) in the paper 
by Tuszynski and Dixon (1989). Also note that symbols in the two double sums in 
equation (14) may be conveniently rearranged in order to obtain the simpler formula 

ih& =A:  wn,kak+ Z: (A4A,k, ,a:+a:A~P*, , , , )a~a, .  (16) 

Furthermore, the interchange of a: and a: in the effective Hamiltonian leaves it 
invariant from which we infer that 

A:-  qN"(l +q)+q-'aLa. -qa,a.. t 

k km.1 

A , , ,  = A!,km (17) 

giving the final form 

In order to study the emergence of coherence in this system and to grasp such 
phenomena as localization and delocalization, we shall now make several simplifying 
assumptions about the nature of interactions. First of all, it will be assumed that there 
is no externally driven flux of energy which leads to the requirement 

0 
wm,k = i f  n = k  (19) 

but there are also hopping terms between nearest neighbours only so that 

w.,k = w '  if n = k + l .  (20 )  

Next, two-quanta exchanges are also possible between nearest neighbours only and 
on a given site (local excitations and de-excitations). For simplicity, we shall focus on 
site n, henceforth referred to as  '0' (since the problem has translational invariance and 
periodic boundary conditions can be imposed) and its nearest neighbour, n + 1 or 
n - I ,  referred to as '+' or '-', respectively. In figure 1 we have schematically 
represented all the one- and two-body terms which are thus retained in the model. 
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ONE-BODY TERMS 

t 0 
woaAao 

(on-rite) 

TWO-BODY TERMS 

f- 
t: 0 

o'a:a, 

o'a:a+ 

(hopping) 

f-.m + 
0 - 

A+,,a:o:a,a_ 
A.,,o?a:a,a+ 
(super-exchange) 

A+.,a:alo,n, 

A . + , a ~ o ~ o , a ,  
(diffusion) 

Figure 1. An illustration of the types of  quantum processes considered in the model 

4. Field dynamics 

Our interest is in obtaining a dynamical description of the classical envelope for the 
q-boson system in the vicinity of condensation. With this in mind we now invoke the 
Jackiw-Goldstone formalism (Jackiw 1977, Rajaraman 1987) and represent the quan- 
tum field as a linear combination of its classical part (also called field translation) and 
its quantum component. It is assumed that the latter is a correction on the order of f 
and, especially in  macroscopically occupied states such as is the case with Bose 
condensation, it  can be in the first instance neglected. Subsequently, quantum correc- 
tions can be reintroduced by using a linearization procedure with the classical envelope 
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providing an effective binding potential for quantum excitations. Thus, we have: 

a ,  = @(x) + A(x) (21) 

where 4 ( x )  is a classical field centred at  site n and A is a quantum field correction. 
Furthermore, we expect that the neighbouring sites ('+' and ' - ') which were included 
in the interactions are separated by a relatively small distance d, so that 

a ,  = @(xk d )  +A(x* d )  (22) 

@ ( x * d ) = @ ( x ) * d . V @ + .  ,. , (23) 
In the next step we derive the equation of motion for the classical envelope @ making 
use of the following approximations: 

and the classical field @ can be approximated through Taylor expansion as 

a ? = @ * - d . U @ *  (24/1! 

a _ = @ - d .  V@ (24b) 

a + = @ + d . V @  ( 2 4 ~ )  

a : = @ * + d ,  V@*. (24d) 

From equation (18), using approximations (21)-(24), keeping only the nearest-neigh- 
bour interactions (as described in figure 1)  and taking for the number operator 

N = /@Iz 
we obtain the following nonlinear differential equation for a: 
ih@, = [( 1 + q )  e'"41m1'+ (4-' - q)/@12]{w"@ + W ' d 2 V 2 @  

+?A"UJ@\2@+ ("u++Aoo_)(@2- @(V@)2)@* 

+ (Atuo+A-oo)1@I2@ (25) 

+ Ao++)( / @ I 2  + d21V4/')@ + (Ao-- + Ao-o)(l@12 + d21V@12)@ 

where the coefficients A are those of equation ( l a )  with the subscripts 0, + and - 
being abbreviations for the sites N, n + 1 and n - 1 ,  respectively. Various terms can be 

i h @ , = [ ( ~ + q )  e'""~l'+(q-'-q)1@12] 

A & ^ _  ^_^.._^-I '-̂ _ ^^^^ I^ _:__- 
L l l C t L  gLUUp'rU L U L  cuL1"Gilll=il lcci  ,U B L Y C  

x {al@ + a2V% + 12,1@12@ +a41V@(2@ + a,(V@)2@*} 

n ! = w u  

where the new coefficients are defined below 

n , = w ' d '  

~ , = 2 A u ~ ~ + A o t i t + A ~ o - + A ~ + ~ + A o + + + A ~ - - + A o - , , + A - ~ ~ + A + ~ ~ ~  

Q4 = d'(Ao+,,+Ao+++A,I--+ A"-") 

f15= -d2(Ao,~++Ao+). 

Equation (26), although very complicated, is not impossible to deal with, at least as 
far as finding special types of solutions. The next section will be devoted to the study 
of this equation and its analytical solutions. 
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5. Analysis of the equation of motion 

We first note that when q +  1 the term in the square bracket of equation (26) tends to 
unity also and we obtain a generalized nonlinear Schrodinger equation which has been 
studied extensively in the past (see for example Gagnon and Winternitz 1988, Dixon 
and Tuszynski 1989 or Clarkson and Tuszyriski 1990). In particular, it has been shown 
that under special circumstances soliton solutions exist. It will be of special interest 
to examine the r61e of q in establishing new types of solutions. 

The first step in our analysis is to represent the field @ in modulus-argument form. 
We thus write 

@ = 7 e'*. (27) 
Substituting the above into equation (26) and separating the real and imaginary parts 
leads to the following two coupled equations 

- fiv+, = [ ( I  + 4 )  exp(lnqq'f+(q-l - q h 2 l t n 1 v  +n2V27 -n277(V+)' 

+n3~3+n,~v~~3-n~v2~V$~2+nSv~~~~z-nSv3~~$~21 (28) 
for the real part, and 

fin = [ ( l + q )  (29) 
Fer !he im~ginary pi!?. No!: thr! eqx!icn (29) is ac!nmr!icz!!y si!isfied when !he 
amplitude 7 is independent of time and the phase $ is constant in space, so that 
V$ = Vz$ =O.  In this case, which can be referred to as a standing wave (or a breather), 
equation (28) simplifies to 

where it was assumed that $ = ut. 
Several observations can be made based on equation (30). First, for the lowest 

mode of oscillation, i.e. for Y = 0, the effect of q-bosons on the field dynamics disappears 
completely since the last term in equation (30) vanishes. The higher the frequency of 
the temporal phase oscillation, the larger the effect the quantum group has on the field 
dynamics. In a one-dimensional space equation (30) can be integrated analytically 
i v o s  IYYI) since it iaus iniu inc CMSS 
,.,-- .A,..\ ~ I ~ . -  ._ P.1,- !~... .L. .,... 

Through two substitutions: 

R ( z )  
- S ( 2 )  
y = -  

and 

where R, S, T and U are polynomials to be adjusted self-consistently, it can be shown 
that a solution of equation (31) is given by 
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where D = I:, dy’B(y’). In our case, B is a linear function of 7 and hence D is a 
quadratic function of q. Thus, the integral under the square root of equation (34) will 
contain a Gaussian factor and a very complicated combination of polynomial and 
Gaussian functions. Therefore, indefinite integrals of this type will most likely be 
impossible to represent in closed analytical form. 

In order to gain a qualitative understanding of the r6le played by q, we now analyse 
the form of the right-hand side of equation (30) (denoted as RHS) in two cases 
corresponding to q > 0; (a!  4 = l i  on either side of unityl and ( h )  q >> !I 

J A Tuszyriski and M Kibler 

( a )  If q = 1 + E  where I.? << 1 and E can be positive or negative we can rewrite RHS 

to the leading order in E as  

This indicates a rescaling of the model parameters R ,  and R, as a result of q-boson 
reformulation of the problem for q = 1. The leading terms appear insensitive to the 
sign of E. Since most of the interesting phenomena (bifurcations, separatrix crossing, 
etc.) occur when the linear term on RHS vanishes, the result will be a shift of this 
condition proportional to the oscillation frequency U. 

(6) If q >> 1 the situation is quite different since, to the leading order, the right-hand 
side of equation (30) can be approximated by 

h U  

4 
R W S = - - R , ~ ) - - R , ~ ~ - -  q exp[-(In q)q’] .  (36) 

It is easy to see that, with a fixed q, for large amplitudes q we effectively obtain a 
different type of redressing, namely 

It appears that increasing q leads to a diminishing value of ‘correction’ terms both in 

effects vanish completely as q +  1, we expect an optimum value qa of q ( 1  <qO<m), 
such that the effect on the field dynamics will be the largest. However, on the other 
side of unity, i.e. for 0 < q < 1, a completely different picture emerges. When q + 0, the 
dominant behaviour can be described by 

!he !inear and cubic con!ribu!ions !O !he right-hand side of equation (37); Since the 

Thus, with a fixed non-zero values of q a dramatic effect takes place for small amplitude 
patterns of q. This can be interpreted as an infinite barrier situated at 7 = 0 and 
reflecting aU spatial oscillations which would otherwise cross the q = O  axis. 

The importance of investigating RHS can be seen on the following two special cases. 
When Ri = R; = 0 we have !he first order .:..!ion 

(39) 
1 

(Vq)’=- R H s ( q ) .  
0 4  
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We have plotted the various types of behaviour corresponding to this case in figure 2. 
In figures 2(a), 2(b) we have the situation existing for q > 1 ,  so that 

( V 7 ) Z -  -n;"l, -a;*?). (40) 

withn;">OandiI;"<Oinfigure2(a) whileCL;"<OandCl;"<Oin figure2(b). Figures 
2 ( c )  and 2 ( d )  refer to the case where O <  q < 1, so that 

( V 7 ) 2 =  -n;*q -n;"73-n:;7-'. (41) 

The dashed regions correspond to non-singular solutions of equation (39). The lowest 
solution takes the form of a bump soliton (localized in space) while the remaining 
ones are spatial oscillations (usually in the form of elliptic waves). Note that figures 
2 ( b )  and 2 ( c )  correspond to situations where no non-singular solutions are possible. 

Figure 2. The types of Situations encountered in equation (39). ( a )  q >  I and fl;'>O, 
R;'<O; ( b )  q t l  and fl ;"<O, fl;"cO: ( c l  O < q < l  and fl:"<O, fl;*<O: ( d )  O < q < l  
and l l ; R > O ,  flrn<O. 

The other special case we wish to discuss occurs when n,=n,=O, so that we can 
integrate equation (30) in a one-dimensional space to obtain 

where Cl, is an integration constant and C l ,  = 0 unless 0 < q < 1. Figure 3 illustrates 
the various types of behaviour. We have assumed that &>O. An interesting situation 
occurs in figure 3 ( e )  where an infinitesimal value of q leads to the creation of an 
infinite number of non-singular wave-type solutions in the case which does not have 
any non-zero solutions when q > 1. By analysing these diagrams we clearly see that 
the behaviour of q-bosons is often, but not always, similar (especially when q <  I )  to 
that of ordinary interacting bosons. 
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Figure 3. The types of situations encountered in equation (43). Diagrams ( a ) - ( d )  refer to 
0, = 0 while those in ( e ) - ( h )  to fl, = 0. The latter 4 are arranged in the order to correspond 
to the former four diagrams. We have (a) fl;'> O,Ra>  0; ( b )  fl:'<O, fl:"<k ( e )  fi;'<O, 
fl:fl>o; (d)R;*>O, fl:*<o. 

6. Conclusions 

In the paper we have provided a natural extension of the method of coherent structures 
from systems of stongly interacting bosons to those composed of interacting q-bosons. 
In the derivation of field dynamics for the system we have assumed the quantum group 
extension for their commutation relations and considered mutually commuting sets of 
q-extended Bose-Einstein operators. Following the derivation of the Heisenberg 
equation of motion for an annihilation operator, we have retained only local interaction 
terms and those non-local ones which couple to nearest neighbours only. In spite of 
this limitation, the obtained field equations for the classical envelope are very rich in 
structure and non-trivial behaviour. It has been demonstrated that for q + 1 we recover 
the standard form of the field equations. We then extensively analysed the r81e of the 
parameter q in obtaining particular types of non-singular solutions. It has been found 
that for qa 1 and q > > l  the corrections merely redress the standard dynamical 
coefficients and, rather surprisingly, that these corrections diminish as the two extremes 
are approached. On the other hand, for O <  q < 1, a dramatic change is observed when 
q -+ 0 with the development of new types of solutions in the previously forbidden range 
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of values. Thus, the q-extension of the method of coherent structures contains some 
straightforward rescaling (when q > 1) as well as highly non-trivial changes when q < 1. 
This suggests the possibility of a bifurcation phenomenon which might occur when q 
crosses the value 1. 

The scope of possible applications of this method is quite large and encompasses 
anharmonic mode interactions in solids, transport processes along quasi-one- 
dimensional chains and condensatian phenomena In superfluids. We in!end to isvesti- 
gate particular applications in the near future. 
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